Papers
Topics
Authors
Recent
2000 character limit reached

Self-Supervised Learning of Multi-Object Keypoints for Robotic Manipulation (2205.08316v2)

Published 17 May 2022 in cs.RO and cs.CV

Abstract: In recent years, policy learning methods using either reinforcement or imitation have made significant progress. However, both techniques still suffer from being computationally expensive and requiring large amounts of training data. This problem is especially prevalent in real-world robotic manipulation tasks, where access to ground truth scene features is not available and policies are instead learned from raw camera observations. In this paper, we demonstrate the efficacy of learning image keypoints via the Dense Correspondence pretext task for downstream policy learning. Extending prior work to challenging multi-object scenes, we show that our model can be trained to deal with important problems in representation learning, primarily scale-invariance and occlusion. We evaluate our approach on diverse robot manipulation tasks, compare it to other visual representation learning approaches, and demonstrate its flexibility and effectiveness for sample-efficient policy learning.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.