Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Delaytron: Efficient Learning of Multiclass Classifiers with Delayed Bandit Feedbacks (2205.08234v1)

Published 17 May 2022 in cs.LG, cs.AI, and stat.ML

Abstract: In this paper, we present online algorithm called {\it Delaytron} for learning multi class classifiers using delayed bandit feedbacks. The sequence of feedback delays ${d_t}{t=1}T$ is unknown to the algorithm. At the $t$-th round, the algorithm observes an example $\mathbf{x}_t$ and predicts a label $\tilde{y}_t$ and receives the bandit feedback $\mathbb{I}[\tilde{y}_t=y_t]$ only $d_t$ rounds later. When $t+d_t>T$, we consider that the feedback for the $t$-th round is missing. We show that the proposed algorithm achieves regret of $\mathcal{O}\left(\sqrt{\frac{2 K}{\gamma}\left[\frac{T}{2}+\left(2+\frac{L2}{R2\Vert \W\Vert_F2}\right)\sum{t=1}Td_t\right]}\right)$ when the loss for each missing sample is upper bounded by $L$. In the case when the loss for missing samples is not upper bounded, the regret achieved by Delaytron is $\mathcal{O}\left(\sqrt{\frac{2 K}{\gamma}\left[\frac{T}{2}+2\sum_{t=1}Td_t+\vert \mathcal{M}\vert T\right]}\right)$ where $\mathcal{M}$ is the set of missing samples in $T$ rounds. These bounds were achieved with a constant step size which requires the knowledge of $T$ and $\sum_{t=1}Td_t$. For the case when $T$ and $\sum_{t=1}Td_t$ are unknown, we use a doubling trick for online learning and proposed Adaptive Delaytron. We show that Adaptive Delaytron achieves a regret bound of $\mathcal{O}\left(\sqrt{T+\sum_{t=1}Td_t}\right)$. We show the effectiveness of our approach by experimenting on various datasets and comparing with state-of-the-art approaches.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.