Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Active learning of causal probability trees (2205.08178v1)

Published 17 May 2022 in cs.LG and stat.ME

Abstract: The past two decades have seen a growing interest in combining causal information, commonly represented using causal graphs, with machine learning models. Probability trees provide a simple yet powerful alternative representation of causal information. They enable both computation of intervention and counterfactuals, and are strictly more general, since they allow context-dependent causal dependencies. Here we present a Bayesian method for learning probability trees from a combination of interventional and observational data. The method quantifies the expected information gain from an intervention, and selects the interventions with the largest gain. We demonstrate the efficiency of the method on simulated and real data. An effective method for learning probability trees on a limited interventional budget will greatly expand their applicability.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.