Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Pairwise Comparison Network for Remote Sensing Scene Classification (2205.08147v2)

Published 17 May 2022 in cs.CV and cs.AI

Abstract: Remote sensing scene classification aims to assign a specific semantic label to a remote sensing image. Recently, convolutional neural networks have greatly improved the performance of remote sensing scene classification. However, some confused images may be easily recognized as the incorrect category, which generally degrade the performance. The differences between image pairs can be used to distinguish image categories. This paper proposed a pairwise comparison network, which contains two main steps: pairwise selection and pairwise representation. The proposed network first selects similar image pairs, and then represents the image pairs with pairwise representations. The self-representation is introduced to highlight the informative parts of each image itself, while the mutual-representation is proposed to capture the subtle differences between image pairs. Comprehensive experimental results on two challenging datasets (AID, NWPU-RESISC45) demonstrate the effectiveness of the proposed network. The codes are provided in https://github.com/spectralpublic/PCNet.git.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.