Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Iterated Gauss-Seidel GMRES (2205.07805v5)

Published 16 May 2022 in math.NA and cs.NA

Abstract: The GMRES algorithm of Saad and Schultz (1986) is an iterative method for approximately solving linear systems $A{\bf x}={\bf b}$, with initial guess ${\bf x}_0$ and residual ${\bf r}_0 = {\bf b} - A{\bf x}_0$. The algorithm employs the Arnoldi process to generate the Krylov basis vectors (the columns of $V_k$). It is well known that this process can be viewed as a $QR$ factorization of the matrix $B_k = [: {\bf r}_0, AV_k:]$ at each iteration. Despite an ${O}(\epsilon)\kappa(B_k)$ loss of orthogonality, for unit roundoff $\epsilon$ and condition number $\kappa$, the modified Gram-Schmidt formulation was shown to be backward stable in the seminal paper by Paige et al. (2006). We present an iterated Gauss-Seidel formulation of the GMRES algorithm (IGS-GMRES) based on the ideas of Ruhe (1983) and \'{S}wirydowicz et al. (2020). IGS-GMRES maintains orthogonality to the level ${O}(\epsilon)\kappa(B_k)$ or ${O}(\epsilon)$, depending on the choice of one or two iterations; for two Gauss-Seidel iterations, the computed Krylov basis vectors remain orthogonal to working precision and the smallest singular value of $V_k$ remains close to one. The resulting GMRES method is thus backward stable. We show that IGS-GMRES can be implemented with only a single synchronization point per iteration, making it relevant to large-scale parallel computing environments. We also demonstrate that, unlike MGS-GMRES, in IGS-GMRES the relative Arnoldi residual corresponding to the computed approximate solution no longer stagnates above machine precision even for highly non-normal systems.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.