Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Attacking and Defending Deep Reinforcement Learning Policies (2205.07626v1)

Published 16 May 2022 in cs.LG and cs.CR

Abstract: Recent studies have shown that deep reinforcement learning (DRL) policies are vulnerable to adversarial attacks, which raise concerns about applications of DRL to safety-critical systems. In this work, we adopt a principled way and study the robustness of DRL policies to adversarial attacks from the perspective of robust optimization. Within the framework of robust optimization, optimal adversarial attacks are given by minimizing the expected return of the policy, and correspondingly a good defense mechanism should be realized by improving the worst-case performance of the policy. Considering that attackers generally have no access to the training environment, we propose a greedy attack algorithm, which tries to minimize the expected return of the policy without interacting with the environment, and a defense algorithm, which performs adversarial training in a max-min form. Experiments on Atari game environments show that our attack algorithm is more effective and leads to worse return of the policy than existing attack algorithms, and our defense algorithm yields policies more robust than existing defense methods to a range of adversarial attacks (including our proposed attack algorithm).

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube