Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A $(3+\varepsilon)$-Approximate Correlation Clustering Algorithm in Dynamic Streams (2205.07593v6)

Published 16 May 2022 in cs.DS and cs.DC

Abstract: Grouping together similar elements in datasets is a common task in data mining and machine learning. In this paper, we study streaming algorithms for correlation clustering, where each pair of elements is labeled either similar or dissimilar. The task is to partition the elements and the objective is to minimize disagreements, that is, the number of dissimilar elements grouped together and similar elements that get separated. Our main contribution is a semi-streaming algorithm that achieves a $(3 + \varepsilon)$-approximation to the minimum number of disagreements using a single pass over the stream. In addition, the algorithm also works for dynamic streams. Our approach builds on the analysis of the PIVOT algorithm by Ailon, Charikar, and Newman [JACM'08] that obtains a $3$-approximation in the centralized setting. Our design allows us to sparsify the input graph by ignoring a large portion of the nodes and edges without a large extra cost as compared to the analysis of PIVOT. This sparsification makes our technique applicable in models such as semi-streaming, where sparse graphs can typically be handled much more efficiently. Our work improves on the approximation ratio of the recent single-pass $5$-approximation algorithm and on the number of passes of the recent $O(1/\varepsilon)$-pass $(3 + \varepsilon)$-approximation algorithm [Behnezhad, Charikar, Ma, Tan FOCS'22, SODA'23]. Our algorithm is also more robust and can be applied in dynamic streams. Furthermore, it is the first single pass $(3 + \varepsilon)$-approximation algorithm that uses polynomial post-processing time.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.