Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Lossless ANN-SNN Conversion under Ultra-Low Latency with Dual-Phase Optimization (2205.07473v3)

Published 16 May 2022 in cs.NE and cs.LG

Abstract: Spiking neural networks (SNNs) operating with asynchronous discrete events show higher energy efficiency with sparse computation. A popular approach for implementing deep SNNs is ANN-SNN conversion combining both efficient training of ANNs and efficient inference of SNNs. However, the accuracy loss is usually non-negligible, especially under a few time steps, which restricts the applications of SNN on latency-sensitive edge devices greatly. In this paper, we first identify that such performance degradation stems from the misrepresentation of the negative or overflow residual membrane potential in SNNs. Inspired by this, we decompose the conversion error into three parts: quantization error, clipping error, and residual membrane potential representation error. With such insights, we propose a two-stage conversion algorithm to minimize those errors respectively. Besides, We show each stage achieves significant performance gains in a complementary manner. By evaluating on challenging datasets including CIFAR-10, CIFAR- 100 and ImageNet, the proposed method demonstrates the state-of-the-art performance in terms of accuracy, latency and energy preservation. Furthermore, our method is evaluated using a more challenging object detection task, revealing notable gains in regression performance under ultra-low latency when compared to existing spike-based detection algorithms. Codes are available at https://github.com/Windere/snn-cvt-dual-phase.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.