Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Transformers in 3D Point Clouds: A Survey (2205.07417v2)

Published 16 May 2022 in cs.CV

Abstract: Transformers have been at the heart of the NLP and Computer Vision (CV) revolutions. The significant success in NLP and CV inspired exploring the use of Transformers in point cloud processing. However, how do Transformers cope with the irregularity and unordered nature of point clouds? How suitable are Transformers for different 3D representations (e.g., point- or voxel-based)? How competent are Transformers for various 3D processing tasks? As of now, there is still no systematic survey of the research on these issues. For the first time, we provided a comprehensive overview of increasingly popular Transformers for 3D point cloud analysis. We start by introducing the theory of the Transformer architecture and reviewing its applications in 2D/3D fields. Then, we present three different taxonomies (i.e., implementation-, data representation-, and task-based), which can classify current Transformer-based methods from multiple perspectives. Furthermore, we present the results of an investigation of the variants and improvements of the self-attention mechanism in 3D. To demonstrate the superiority of Transformers in point cloud analysis, we present comprehensive comparisons of various Transformer-based methods for classification, segmentation, and object detection. Finally, we suggest three potential research directions, providing benefit references for the development of 3D Transformers.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.