Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Splendors and Miseries of Heavisidisation (2205.07377v1)

Published 15 May 2022 in hep-th and cs.LG

Abstract: Machine Learning (ML) is applicable to scientific problems, i.e. to those which have a well defined answer, only if this answer can be brought to a peculiar form ${\cal G}: X\longrightarrow Z$ with ${\cal G}(\vec x)$ expressed as a combination of iterated Heaviside functions. At present it is far from obvious, if and when such representations exist, what are the obstacles and, if they are absent, what are the ways to convert the known formulas into this form. This gives rise to a program of reformulation of ordinary science in such terms -- which sounds like a strong enhancement of the constructive mathematics approach, only this time it concerns all natural sciences. We describe the first steps on this long way.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube