Papers
Topics
Authors
Recent
2000 character limit reached

The Splendors and Miseries of Heavisidisation

Published 15 May 2022 in hep-th and cs.LG | (2205.07377v1)

Abstract: Machine Learning (ML) is applicable to scientific problems, i.e. to those which have a well defined answer, only if this answer can be brought to a peculiar form ${\cal G}: X\longrightarrow Z$ with ${\cal G}(\vec x)$ expressed as a combination of iterated Heaviside functions. At present it is far from obvious, if and when such representations exist, what are the obstacles and, if they are absent, what are the ways to convert the known formulas into this form. This gives rise to a program of reformulation of ordinary science in such terms -- which sounds like a strong enhancement of the constructive mathematics approach, only this time it concerns all natural sciences. We describe the first steps on this long way.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.