Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fairness via Explanation Quality: Evaluating Disparities in the Quality of Post hoc Explanations (2205.07277v2)

Published 15 May 2022 in cs.LG

Abstract: As post hoc explanation methods are increasingly being leveraged to explain complex models in high-stakes settings, it becomes critical to ensure that the quality of the resulting explanations is consistently high across various population subgroups including the minority groups. For instance, it should not be the case that explanations associated with instances belonging to a particular gender subgroup (e.g., female) are less accurate than those associated with other genders. However, there is little to no research that assesses if there exist such group-based disparities in the quality of the explanations output by state-of-the-art explanation methods. In this work, we address the aforementioned gaps by initiating the study of identifying group-based disparities in explanation quality. To this end, we first outline the key properties which constitute explanation quality and where disparities can be particularly problematic. We then leverage these properties to propose a novel evaluation framework which can quantitatively measure disparities in the quality of explanations output by state-of-the-art methods. Using this framework, we carry out a rigorous empirical analysis to understand if and when group-based disparities in explanation quality arise. Our results indicate that such disparities are more likely to occur when the models being explained are complex and highly non-linear. In addition, we also observe that certain post hoc explanation methods (e.g., Integrated Gradients, SHAP) are more likely to exhibit the aforementioned disparities. To the best of our knowledge, this work is the first to highlight and study the problem of group-based disparities in explanation quality. In doing so, our work sheds light on previously unexplored ways in which explanation methods may introduce unfairness in real world decision making.

Citations (48)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.