Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Online Nonsubmodular Minimization with Delayed Costs: From Full Information to Bandit Feedback (2205.07217v2)

Published 15 May 2022 in cs.LG

Abstract: Motivated by applications to online learning in sparse estimation and Bayesian optimization, we consider the problem of online unconstrained nonsubmodular minimization with delayed costs in both full information and bandit feedback settings. In contrast to previous works on online unconstrained submodular minimization, we focus on a class of nonsubmodular functions with special structure, and prove regret guarantees for several variants of the online and approximate online bandit gradient descent algorithms in static and delayed scenarios. We derive bounds for the agent's regret in the full information and bandit feedback setting, even if the delay between choosing a decision and receiving the incurred cost is unbounded. Key to our approach is the notion of $(\alpha, \beta)$-regret and the extension of the generic convex relaxation model from~\citet{El-2020-Optimal}, the analysis of which is of independent interest. We conduct and showcase several simulation studies to demonstrate the efficacy of our algorithms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.