Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

SVR-based Observer Design for Unknown Linear Systems: Complexity and Performance (2205.07004v1)

Published 14 May 2022 in eess.SY and cs.SY

Abstract: In this paper we consider estimating the system parameters and designing stable observer for unknown noisy linear time-invariant (LTI) systems. We propose a Support Vector Regression (SVR) based estimator to provide adjustable asymmetric error interval for estimations. This estimator is capable to trade-off bias-variance of the estimation error by tuning parameter $\gamma > 0$ in the loss function. This method enjoys the same sample complexity of $\mathcal{O}(1/\sqrt{N})$ as the Ordinary Least Square (OLS) based methods but achieves a $\mathcal{O}(1/(\gamma+1))$ smaller variance. Then, a stable observer gain design procedure based on the estimations is proposed. The observation performance bound based on the estimations is evaluated by the mean square observation error, which is shown to be adjustable by tuning the parameter $\gamma$, thus achieving higher scalability than the OLS methods. The advantages of the estimation error bias-variance trade-off for observer design are also demonstrated through matrix spectrum and observation performance optimality analysis. Extensive simulation validations are conducted to verify the computed estimation error and performance optimality with different $\gamma$ and noise settings. The variances of the estimation error and the fluctuations in performance are smaller with a properly-designed parameter $\gamma$ compared with the OLS methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.