Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sparsity and $\ell_p$-Restricted Isometry (2205.06738v2)

Published 13 May 2022 in cs.CC, cs.IT, and math.IT

Abstract: A matrix $A$ is said to have the $\ell_p$-Restricted Isometry Property ($\ell_p$-RIP) if for all vectors $x$ of up to some sparsity $k$, $|{Ax}|_p$ is roughly proportional to $|{x}|_p$. We study this property for $m \times n$ matrices of rank proportional to $n$ and $k = \Theta(n)$. In this parameter regime, $\ell_p$-RIP matrices are closely connected to Euclidean sections, and are "real analogs" of testing matrices for locally testable codes. It is known that with high probability, random dense $m\times n$ matrices (e.g., with i.i.d. $\pm 1$ entries) are $\ell_2$-RIP with $k \approx m/\log n$, and sparse random matrices are $\ell_p$-RIP for $p \in [1,2)$ when $k, m = \Theta(n)$. However, when $m = \Theta(n)$, sparse random matrices are known to not be $\ell_2$-RIP with high probability. Against this backdrop, we show that sparse matrices cannot be $\ell_2$-RIP in our parameter regime. On the other hand, for $p \neq 2$, we show that every $\ell_p$-RIP matrix must be sparse. Thus, sparsity is incompatible with $\ell_2$-RIP, but necessary for $\ell_p$-RIP for $p \neq 2$. Under a suitable interpretation, our negative result about $\ell_2$-RIP gives an impossibility result for a certain continuous analog of "$c3$-LTCs": locally testable codes of constant rate, constant distance and constant locality that were constructed in recent breakthroughs.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.