Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

l-Leaks: Membership Inference Attacks with Logits (2205.06469v1)

Published 13 May 2022 in cs.LG, cs.AI, and cs.CR

Abstract: Machine Learning (ML) has made unprecedented progress in the past several decades. However, due to the memorability of the training data, ML is susceptible to various attacks, especially Membership Inference Attacks (MIAs), the objective of which is to infer the model's training data. So far, most of the membership inference attacks against ML classifiers leverage the shadow model with the same structure as the target model. However, empirical results show that these attacks can be easily mitigated if the shadow model is not clear about the network structure of the target model. In this paper, We present attacks based on black-box access to the target model. We name our attack \textbf{l-Leaks}. The l-Leaks follows the intuition that if an established shadow model is similar enough to the target model, then the adversary can leverage the shadow model's information to predict a target sample's membership.The logits of the trained target model contain valuable sample knowledge. We build the shadow model by learning the logits of the target model and making the shadow model more similar to the target model. Then shadow model will have sufficient confidence in the member samples of the target model. We also discuss the effect of the shadow model's different network structures to attack results. Experiments over different networks and datasets demonstrate that both of our attacks achieve strong performance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.