Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Impala: Low-Latency, Communication-Efficient Private Deep Learning Inference (2205.06437v1)

Published 13 May 2022 in cs.CR

Abstract: This paper proposes Impala, a new cryptographic protocol for private inference in the client-cloud setting. Impala builds upon recent solutions that combine the complementary strengths of homomorphic encryption (HE) and secure multi-party computation (MPC). A series of protocol optimizations are developed to reduce both communication and performance bottlenecks. First, we remove MPC's overwhelmingly high communication cost from the client by introducing a proxy server and developing a low-overhead key switching technique. Key switching reduces the clients bandwidth by multiple orders of magnitude, however the communication between the proxy and cloud is still excessive. Second, to we develop an optimized garbled circuit that leverages truncated secret shares for faster evaluation and less proxy-cloud communication. Finally, we propose sparse HE convolution to reduce the computational bottleneck of using HE. Compared to the state-of-the-art, these optimizations provide a bandwidth savings of over 3X and speedup of 4X for private deep learning inference.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.