Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Warm-starting DARTS using meta-learning (2205.06355v1)

Published 12 May 2022 in cs.LG

Abstract: Neural architecture search (NAS) has shown great promise in the field of automated machine learning (AutoML). NAS has outperformed hand-designed networks and made a significant step forward in the field of automating the design of deep neural networks, thus further reducing the need for human expertise. However, most research is done targeting a single specific task, leaving research of NAS methods over multiple tasks mostly overlooked. Generally, there exist two popular ways to find an architecture for some novel task. Either searching from scratch, which is ineffective by design, or transferring discovered architectures from other tasks, which provides no performance guarantees and is probably not optimal. In this work, we present a meta-learning framework to warm-start Differentiable architecture search (DARTS). DARTS is a NAS method that can be initialized with a transferred architecture and is able to quickly adapt to new tasks. A task similarity measure is used to determine which transfer architecture is selected, as transfer architectures found on similar tasks will likely perform better. Additionally, we employ a simple meta-transfer architecture that was learned over multiple tasks. Experiments show that warm-started DARTS is able to find competitive performing architectures while reducing searching costs on average by 60%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Matej Grobelnik (1 paper)
  2. Joaquin Vanschoren (68 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.