Papers
Topics
Authors
Recent
2000 character limit reached

Provably Safe Deep Reinforcement Learning for Robotic Manipulation in Human Environments (2205.06311v1)

Published 12 May 2022 in cs.RO and cs.AI

Abstract: Deep reinforcement learning (RL) has shown promising results in the motion planning of manipulators. However, no method guarantees the safety of highly dynamic obstacles, such as humans, in RL-based manipulator control. This lack of formal safety assurances prevents the application of RL for manipulators in real-world human environments. Therefore, we propose a shielding mechanism that ensures ISO-verified human safety while training and deploying RL algorithms on manipulators. We utilize a fast reachability analysis of humans and manipulators to guarantee that the manipulator comes to a complete stop before a human is within its range. Our proposed method guarantees safety and significantly improves the RL performance by preventing episode-ending collisions. We demonstrate the performance of our proposed method in simulation using human motion capture data.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.