Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets (2205.06218v1)

Published 12 May 2022 in cs.CV and cs.LG

Abstract: This paper performs comprehensive analysis on datasets for occlusion-aware face segmentation, a task that is crucial for many downstream applications. The collection and annotation of such datasets are time-consuming and labor-intensive. Although some efforts have been made in synthetic data generation, the naturalistic aspect of data remains less explored. In our study, we propose two occlusion generation techniques, Naturalistic Occlusion Generation (NatOcc), for producing high-quality naturalistic synthetic occluded faces; and Random Occlusion Generation (RandOcc), a more general synthetic occluded data generation method. We empirically show the effectiveness and robustness of both methods, even for unseen occlusions. To facilitate model evaluation, we present two high-resolution real-world occluded face datasets with fine-grained annotations, RealOcc and RealOcc-Wild, featuring both careful alignment preprocessing and an in-the-wild setting for robustness test. We further conduct a comprehensive analysis on a newly introduced segmentation benchmark, offering insights for future exploration.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.