Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

$H^1$-norm stability and convergence of an L2-type method on nonuniform meshes for subdiffusion equation (2205.06060v3)

Published 12 May 2022 in math.NA and cs.NA

Abstract: This work establishes $H1$-norm stability and convergence for an L2 method on general nonuniform meshes when applied to the subdiffusion equation. Under mild constraints on the time step ratio $\rho_k$, such as $0.4573328\leq \rho_k\leq 3.5615528$ for $k\geq 2$, the positive semidefiniteness of a crucial bilinear form associated with the L2 fractional-derivative operator is proved. This result enables us to derive long time $H1$-stability of L2 schemes. These positive semidefiniteness and $H1$-stability properties hold for standard graded meshes with grading parameter $1<r\leq 3.2016538$. In addition, error analysis in the $H^1$-norm for general nonuniform meshes is provided, and convergence of order $(5-\alpha)/2$ in $H^1$-norm is proved for modified graded meshes when $r\>5/\alpha-1$. To the best of our knowledge, this study is the first work on $H1$-norm stability and convergence of L2 methods on general nonuniform meshes for the subdiffusion equation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.