Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond the Status Quo: A Contemporary Survey of Advances and Challenges in Audio Captioning (2205.05357v2)

Published 11 May 2022 in cs.SD and eess.AS

Abstract: Automated audio captioning (AAC), a task that mimics human perception as well as innovatively links audio processing and natural language processing, has overseen much progress over the last few years. AAC requires recognizing contents such as the environment, sound events and the temporal relationships between sound events and describing these elements with a fluent sentence. Currently, an encoder-decoder-based deep learning framework is the standard approach to tackle this problem. Plenty of works have proposed novel network architectures and training schemes, including extra guidance, reinforcement learning, audio-text self-supervised learning and diverse or controllable captioning. Effective data augmentation techniques, especially based on LLMs are explored. Benchmark datasets and AAC-oriented evaluation metrics also accelerate the improvement of this field. This paper situates itself as a comprehensive survey covering the comparison between AAC and its related tasks, the existing deep learning techniques, datasets, and the evaluation metrics in AAC, with insights provided to guide potential future research directions.

Citations (11)

Summary

We haven't generated a summary for this paper yet.