Papers
Topics
Authors
Recent
2000 character limit reached

Deep Depth Completion from Extremely Sparse Data: A Survey (2205.05335v3)

Published 11 May 2022 in cs.CV

Abstract: Depth completion aims at predicting dense pixel-wise depth from an extremely sparse map captured from a depth sensor, e.g., LiDARs. It plays an essential role in various applications such as autonomous driving, 3D reconstruction, augmented reality, and robot navigation. Recent successes on the task have been demonstrated and dominated by deep learning based solutions. In this article, for the first time, we provide a comprehensive literature review that helps readers better grasp the research trends and clearly understand the current advances. We investigate the related studies from the design aspects of network architectures, loss functions, benchmark datasets, and learning strategies with a proposal of a novel taxonomy that categorizes existing methods. Besides, we present a quantitative comparison of model performance on three widely used benchmarks, including indoor and outdoor datasets. Finally, we discuss the challenges of prior works and provide readers with some insights for future research directions.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.