Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Parallel Batch-Dynamic Minimum Spanning Forest and the Efficiency of Dynamic Agglomerative Graph Clustering (2205.04956v3)

Published 10 May 2022 in cs.DS, cs.CC, and cs.DC

Abstract: Hierarchical agglomerative clustering (HAC) is a popular algorithm for clustering data, but despite its importance, no dynamic algorithms for HAC with good theoretical guarantees exist. In this paper, we study dynamic HAC on edge-weighted graphs. As single-linkage HAC reduces to computing a minimum spanning forest (MSF), our first result is a parallel batch-dynamic algorithm for maintaining MSFs. On a batch of $k$ edge insertions or deletions, our batch-dynamic MSF algorithm runs in $O(k\log6 n)$ expected amortized work and $O(\log4 n)$ span with high probability. It is the first fully dynamic MSF algorithm handling batches of edge updates with polylogarithmic work per update and polylogarithmic span. Using our MSF algorithm, we obtain a parallel batch-dynamic algorithm that can answer queries about single-linkage graph HAC clusters. Our second result is that dynamic graph HAC is significantly harder for other common linkage functions. For example, assuming the strong exponential time hypothesis, dynamic graph HAC requires $\Omega(n{1-o(1)})$ work per update or query on a graph with $n$ vertices for complete linkage, weighted average linkage, and average linkage. For complete linkage and weighted average linkage, the bound still holds even for incremental or decremental algorithms and even if we allow $\operatorname{poly}(n)$-approximation. For average linkage, the bound weakens to $\Omega(n{1/2 - o(1)})$ for incremental and decremental algorithms, and the bounds still hold when allowing $n{o(1)}$-approximation.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.