Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Spike-based computational models of bio-inspired memories in the hippocampal CA3 region on SpiNNaker (2205.04782v1)

Published 10 May 2022 in cs.NE, cs.LG, and q-bio.NC

Abstract: The human brain is the most powerful and efficient machine in existence today, surpassing in many ways the capabilities of modern computers. Currently, lines of research in neuromorphic engineering are trying to develop hardware that mimics the functioning of the brain to acquire these superior capabilities. One of the areas still under development is the design of bio-inspired memories, where the hippocampus plays an important role. This region of the brain acts as a short-term memory with the ability to store associations of information from different sensory streams in the brain and recall them later. This is possible thanks to the recurrent collateral network architecture that constitutes CA3, the main sub-region of the hippocampus. In this work, we developed two spike-based computational models of fully functional hippocampal bio-inspired memories for the storage and recall of complex patterns implemented with spiking neural networks on the SpiNNaker hardware platform. These models present different levels of biological abstraction, with the first model having a constant oscillatory activity closer to the biological model, and the second one having an energy-efficient regulated activity, which, although it is still bio-inspired, opts for a more functional approach. Different experiments were performed for each of the models, in order to test their learning/recalling capabilities. A comprehensive comparison between the functionality and the biological plausibility of the presented models was carried out, showing their strengths and weaknesses. The two models, which are publicly available for researchers, could pave the way for future spike-based implementations and applications.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube