Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

CoDo: Contrastive Learning with Downstream Background Invariance for Detection (2205.04617v1)

Published 10 May 2022 in cs.CV and cs.AI

Abstract: The prior self-supervised learning researches mainly select image-level instance discrimination as pretext task. It achieves a fantastic classification performance that is comparable to supervised learning methods. However, with degraded transfer performance on downstream tasks such as object detection. To bridge the performance gap, we propose a novel object-level self-supervised learning method, called Contrastive learning with Downstream background invariance (CoDo). The pretext task is converted to focus on instance location modeling for various backgrounds, especially for downstream datasets. The ability of background invariance is considered vital for object detection. Firstly, a data augmentation strategy is proposed to paste the instances onto background images, and then jitter the bounding box to involve background information. Secondly, we implement architecture alignment between our pretraining network and the mainstream detection pipelines. Thirdly, hierarchical and multi views contrastive learning is designed to improve performance of visual representation learning. Experiments on MSCOCO demonstrate that the proposed CoDo with common backbones, ResNet50-FPN, yields strong transfer learning results for object detection.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube