The Compound Information Bottleneck Outlook (2205.04567v1)
Abstract: We formulate and analyze the compound information bottleneck programming. In this problem, a Markov chain $ \mathsf{X} \rightarrow \mathsf{Y} \rightarrow \mathsf{Z} $ is assumed with fixed marginal distributions $\mathsf{P}{\mathsf{X}}$ and $\mathsf{P}{\mathsf{Y}}$, and the mutual information between $ \mathsf{X} $ and $ \mathsf{Z} $ is sought to be maximized over the choice of conditional probability of $\mathsf{Z}$ given $\mathsf{Y}$ from a given class, under the \textit{worst choice} of the joint probability of the pair $(\mathsf{X},\mathsf{Y})$ from a different class. We consider several classes based on extremes of: mutual information; minimal correlation; total variation; and the relative entropy class. We provide values, bounds, and various characterizations for specific instances of this problem: the binary symmetric case, the scalar Gaussian case, the vector Gaussian case and the symmetric modulo-additive case. Finally, for the general case, we propose a Blahut-Arimoto type of alternating iterations algorithm to find a consistent solution to this problem.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.