Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Compound Information Bottleneck Outlook (2205.04567v1)

Published 9 May 2022 in cs.IT and math.IT

Abstract: We formulate and analyze the compound information bottleneck programming. In this problem, a Markov chain $ \mathsf{X} \rightarrow \mathsf{Y} \rightarrow \mathsf{Z} $ is assumed with fixed marginal distributions $\mathsf{P}{\mathsf{X}}$ and $\mathsf{P}{\mathsf{Y}}$, and the mutual information between $ \mathsf{X} $ and $ \mathsf{Z} $ is sought to be maximized over the choice of conditional probability of $\mathsf{Z}$ given $\mathsf{Y}$ from a given class, under the \textit{worst choice} of the joint probability of the pair $(\mathsf{X},\mathsf{Y})$ from a different class. We consider several classes based on extremes of: mutual information; minimal correlation; total variation; and the relative entropy class. We provide values, bounds, and various characterizations for specific instances of this problem: the binary symmetric case, the scalar Gaussian case, the vector Gaussian case and the symmetric modulo-additive case. Finally, for the general case, we propose a Blahut-Arimoto type of alternating iterations algorithm to find a consistent solution to this problem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.