Papers
Topics
Authors
Recent
2000 character limit reached

Evaluating the Fairness Impact of Differentially Private Synthetic Data (2205.04321v2)

Published 9 May 2022 in cs.LG

Abstract: Differentially private (DP) synthetic data is a promising approach to maximizing the utility of data containing sensitive information. Due to the suppression of underrepresented classes that is often required to achieve privacy, however, it may be in conflict with fairness. We evaluate four DP synthesizers and present empirical results indicating that three of these models frequently degrade fairness outcomes on downstream binary classification tasks. We draw a connection between fairness and the proportion of minority groups present in the generated synthetic data, and find that training synthesizers on data that are pre-processed via a multi-label undersampling method can promote more fair outcomes without degrading accuracy.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.