Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring Cognitive Workload Using Multimodal Sensors (2205.04235v1)

Published 5 May 2022 in q-bio.NC, cs.AI, and cs.HC

Abstract: This study aims to identify a set of indicators to estimate cognitive workload using a multimodal sensing approach and machine learning. A set of three cognitive tests were conducted to induce cognitive workload in twelve participants at two levels of task difficulty (Easy and Hard). Four sensors were used to measure the participants' physiological change, including, Electrocardiogram (ECG), electrodermal activity (EDA), respiration (RESP), and blood oxygen saturation (SpO2). To understand the perceived cognitive workload, NASA-TLX was used after each test and analysed using Chi-Square test. Three well-know classifiers (LDA, SVM, and DT) were trained and tested independently using the physiological data. The statistical analysis showed that participants' perceived cognitive workload was significantly different (p<0.001) between the tests, which demonstrated the validity of the experimental conditions to induce different cognitive levels. Classification results showed that a fusion of ECG and EDA presented good discriminating power (acc=0.74) for cognitive workload detection. This study provides preliminary results in the identification of a possible set of indicators of cognitive workload. Future work needs to be carried out to validate the indicators using more realistic scenarios and with a larger population.

Citations (10)

Summary

We haven't generated a summary for this paper yet.