Papers
Topics
Authors
Recent
2000 character limit reached

Log-concavity and discrete degrees of freedom (2205.04069v3)

Published 9 May 2022 in math.PR, cs.IT, and math.IT

Abstract: We develop the notion of discrete degrees of freedom of a log-concave sequence and use it to prove that geometric distribution minimises R\'enyi entropy of order infinity under fixed variance, among all discrete log-concave random variables in $\mathbb{Z}$. We also show that the quantity $\mathbb{P}(X=\mathbb{E} X)$ is maximised, among all ultra-log-concave random variables with fixed integral mean, for a Poisson distribution.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.