Papers
Topics
Authors
Recent
2000 character limit reached

Multilevel Hierarchical Network with Multiscale Sampling for Video Question Answering (2205.04061v1)

Published 9 May 2022 in cs.CV and cs.AI

Abstract: Video question answering (VideoQA) is challenging given its multimodal combination of visual understanding and natural language processing. While most existing approaches ignore the visual appearance-motion information at different temporal scales, it is unknown how to incorporate the multilevel processing capacity of a deep learning model with such multiscale information. Targeting these issues, this paper proposes a novel Multilevel Hierarchical Network (MHN) with multiscale sampling for VideoQA. MHN comprises two modules, namely Recurrent Multimodal Interaction (RMI) and Parallel Visual Reasoning (PVR). With a multiscale sampling, RMI iterates the interaction of appearance-motion information at each scale and the question embeddings to build the multilevel question-guided visual representations. Thereon, with a shared transformer encoder, PVR infers the visual cues at each level in parallel to fit with answering different question types that may rely on the visual information at relevant levels. Through extensive experiments on three VideoQA datasets, we demonstrate improved performances than previous state-of-the-arts and justify the effectiveness of each part of our method.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.