Papers
Topics
Authors
Recent
2000 character limit reached

Multimodal Semi-Supervised Learning for Text Recognition (2205.03873v1)

Published 8 May 2022 in cs.CV, cs.AI, and cs.LG

Abstract: Until recently, the number of public real-world text images was insufficient for training scene text recognizers. Therefore, most modern training methods rely on synthetic data and operate in a fully supervised manner. Nevertheless, the amount of public real-world text images has increased significantly lately, including a great deal of unlabeled data. Leveraging these resources requires semi-supervised approaches; however, the few existing methods do not account for vision-language multimodality structure and therefore suboptimal for state-of-the-art multimodal architectures. To bridge this gap, we present semi-supervised learning for multimodal text recognizers (SemiMTR) that leverages unlabeled data at each modality training phase. Notably, our method refrains from extra training stages and maintains the current three-stage multimodal training procedure. Our algorithm starts by pretraining the vision model through a single-stage training that unifies self-supervised learning with supervised training. More specifically, we extend an existing visual representation learning algorithm and propose the first contrastive-based method for scene text recognition. After pretraining the LLM on a text corpus, we fine-tune the entire network via a sequential, character-level, consistency regularization between weakly and strongly augmented views of text images. In a novel setup, consistency is enforced on each modality separately. Extensive experiments validate that our method outperforms the current training schemes and achieves state-of-the-art results on multiple scene text recognition benchmarks.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.