Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

ConceptDistil: Model-Agnostic Distillation of Concept Explanations (2205.03601v1)

Published 7 May 2022 in cs.LG and cs.AI

Abstract: Concept-based explanations aims to fill the model interpretability gap for non-technical humans-in-the-loop. Previous work has focused on providing concepts for specific models (eg, neural networks) or data types (eg, images), and by either trying to extract concepts from an already trained network or training self-explainable models through multi-task learning. In this work, we propose ConceptDistil, a method to bring concept explanations to any black-box classifier using knowledge distillation. ConceptDistil is decomposed into two components:(1) a concept model that predicts which domain concepts are present in a given instance, and (2) a distillation model that tries to mimic the predictions of a black-box model using the concept model predictions. We validate ConceptDistil in a real world use-case, showing that it is able to optimize both tasks, bringing concept-explainability to any black-box model.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.