Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Mask-based Neural Beamforming for Moving Speakers with Self-Attention-based Tracking (2205.03568v1)

Published 7 May 2022 in eess.AS and cs.SD

Abstract: Beamforming is a powerful tool designed to enhance speech signals from the direction of a target source. Computing the beamforming filter requires estimating spatial covariance matrices (SCMs) of the source and noise signals. Time-frequency masks are often used to compute these SCMs. Most studies of mask-based beamforming have assumed that the sources do not move. However, sources often move in practice, which causes performance degradation. In this paper, we address the problem of mask-based beamforming for moving sources. We first review classical approaches to tracking a moving source, which perform online or blockwise computation of the SCMs. We show that these approaches can be interpreted as computing a sum of instantaneous SCMs weighted by attention weights. These weights indicate which time frames of the signal to consider in the SCM computation. Online or blockwise computation assumes a heuristic and deterministic way of computing these attention weights that, although simple, may not result in optimal performance. We thus introduce a learning-based framework that computes optimal attention weights for beamforming. We achieve this using a neural network implemented with self-attention layers. We show experimentally that our proposed framework can greatly improve beamforming performance in moving source situations while maintaining high performance in non-moving situations, thus enabling the development of mask-based beamformers robust to source movements.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.