Papers
Topics
Authors
Recent
2000 character limit reached

Transformer-Based Multi-Aspect Multi-Granularity Non-Native English Speaker Pronunciation Assessment

Published 6 May 2022 in cs.SD, cs.LG, and eess.AS | (2205.03432v1)

Abstract: Automatic pronunciation assessment is an important technology to help self-directed language learners. While pronunciation quality has multiple aspects including accuracy, fluency, completeness, and prosody, previous efforts typically only model one aspect (e.g., accuracy) at one granularity (e.g., at the phoneme-level). In this work, we explore modeling multi-aspect pronunciation assessment at multiple granularities. Specifically, we train a Goodness Of Pronunciation feature-based Transformer (GOPT) with multi-task learning. Experiments show that GOPT achieves the best results on speechocean762 with a public automatic speech recognition (ASR) acoustic model trained on Librispeech.

Citations (46)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.