Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Benchmarking Econometric and Machine Learning Methodologies in Nowcasting (2205.03318v1)

Published 6 May 2022 in stat.ML, cs.LG, and econ.EM

Abstract: Nowcasting can play a key role in giving policymakers timelier insight to data published with a significant time lag, such as final GDP figures. Currently, there are a plethora of methodologies and approaches for practitioners to choose from. However, there lacks a comprehensive comparison of these disparate approaches in terms of predictive performance and characteristics. This paper addresses that deficiency by examining the performance of 12 different methodologies in nowcasting US quarterly GDP growth, including all the methods most commonly employed in nowcasting, as well as some of the most popular traditional machine learning approaches. Performance was assessed on three different tumultuous periods in US economic history: the early 1980s recession, the 2008 financial crisis, and the COVID crisis. The two best performing methodologies in the analysis were long short-term memory artificial neural networks (LSTM) and Bayesian vector autoregression (BVAR). To facilitate further application and testing of each of the examined methodologies, an open-source repository containing boilerplate code that can be applied to different datasets is published alongside the paper, available at: github.com/dhopp1/nowcasting_benchmark.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube