Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Control and Majorization of Optimal Control (2205.03279v5)

Published 6 May 2022 in cs.LG, cs.SY, and eess.SY

Abstract: Probabilistic control design is founded on the principle that a rational agent attempts to match modelled with an arbitrary desired closed-loop system trajectory density. The framework was originally proposed as a tractable alternative to traditional optimal control design, parametrizing desired behaviour through fictitious transition and policy densities and using the information projection as a proximity measure. In this work we introduce an alternative parametrization of desired closed-loop behaviour and explore alternative proximity measures between densities. It is then illustrated how the associated probabilistic control problems solve into uncertain or probabilistic policies. Our main result is to show that the probabilistic control objectives majorize conventional, stochastic and risk sensitive, optimal control objectives. This observation allows us to identify two probabilistic fixed point iterations that converge to the deterministic optimal control policies establishing an explicit connection between either formulations. Further we demonstrate that the risk sensitive optimal control formulation is also technically equivalent to a Maximum Likelihood estimation problem on a probabilistic graph model where the notion of costs is directly encoded into the model. The associated treatment of the estimation problem is then shown to coincide with the moment projected probabilistic control formulation. That way optimal decision making can be reformulated as an iterative inference problem. Based on these insights we discuss directions for algorithmic development.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Tom Lefebvre (16 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.