A Logic-based Tractable Approximation of Probability (2205.03198v1)
Abstract: We provide a logical framework in which a resource-bounded agent can be seen to perform approximations of probabilistic reasoning. Our main results read as follows. First we identify the conditions under which propositional probability functions can be approximated by a hierarchy of depth-bounded Belief functions. Second we show that under rather palatable restrictions, our approximations of probability lead to uncertain reasoning which, under the usual assumptions in the field, qualifies as tractable.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.