Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Parametric Generative Schemes with Geometric Constraints for Encoding and Synthesizing Airfoils (2205.02458v2)

Published 5 May 2022 in physics.flu-dyn and cs.LG

Abstract: The modern aerodynamic optimization has a strong demand for parametric methods with high levels of intuitiveness, flexibility, and representative accuracy, which cannot be fully achieved through traditional airfoil parametric techniques. In this paper, two deep learning-based generative schemes are proposed to effectively capture the complexity of the design space while satisfying specific constraints. 1. Soft-constrained scheme: a Conditional Variational Autoencoder (CVAE)-based model to train geometric constraints as part of the network directly. 2. Hard-constrained scheme: a VAE-based model to generate diverse airfoils and an FFD-based technique to project the generated airfoils onto the given constraints. According to the statistical results, the reconstructed airfoils are both accurate and smooth, without any need for additional filters. The soft-constrained scheme generates airfoils that exhibit slight deviations from the expected geometric constraints, yet still converge to the reference airfoil in both geometry space and objective space with some degree of distribution bias. In contrast, the hard-constrained scheme produces airfoils with a wider range of geometric diversity while strictly adhering to the geometric constraints. The corresponding distribution in the objective space is also more diverse, with isotropic uniformity around the reference point and no significant bias. These proposed airfoil parametric methods can break through the boundaries of training data in the objective space, providing higher quality samples for random sampling and improving the efficiency of optimization design.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.