Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

HARL: A Novel Hierachical Adversary Reinforcement Learning for Automoumous Intersection Management (2205.02428v4)

Published 5 May 2022 in cs.MA and cs.RO

Abstract: As an emerging technology, Connected Autonomous Vehicles (CAVs) are believed to have the ability to move through intersections in a faster and safer manner, through effective Vehicle-to-Everything (V2X) communication and global observation. Autonomous intersection management is a key path to efficient crossing at intersections, which reduces unnecessary slowdowns and stops through adaptive decision process of each CAV, enabling fuller utilization of the intersection space. Distributed reinforcement learning (DRL) offers a flexible, end-to-end model for AIM, adapting for many intersection scenarios. While DRL is prone to collisions as the actions of multiple sides in the complicated interactions are sampled from a generic policy, restricting the application of DRL in realistic scenario. To address this, we propose a hierarchical RL framework where models at different levels vary in receptive scope, action step length, and feedback period of reward. The upper layer model accelerate CAVs to prevent them from being clashed, while the lower layer model adjust the trends from upper layer model to avoid the change of mobile state causing new conflicts. And the real action of CAV at each step is co-determined by the trends from both levels, forming a real-time balance in the adversarial process. The proposed model is proven effective in the experiment undertaken in a complicated intersection with 4 branches and 4 lanes each branch, and show better performance compared with baselines.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube