Papers
Topics
Authors
Recent
2000 character limit reached

Knowledge Distillation of Russian Language Models with Reduction of Vocabulary (2205.02340v1)

Published 4 May 2022 in cs.CL and cs.LG

Abstract: Today, transformer LLMs serve as a core component for majority of natural language processing tasks. Industrial application of such models requires minimization of computation time and memory footprint. Knowledge distillation is one of approaches to address this goal. Existing methods in this field are mainly focused on reducing the number of layers or dimension of embeddings/hidden representations. Alternative option is to reduce the number of tokens in vocabulary and therefore the embeddings matrix of the student model. The main problem with vocabulary minimization is mismatch between input sequences and output class distributions of a teacher and a student models. As a result, it is impossible to directly apply KL-based knowledge distillation. We propose two simple yet effective alignment techniques to make knowledge distillation to the students with reduced vocabulary. Evaluation of distilled models on a number of common benchmarks for Russian such as Russian SuperGLUE, SberQuAD, RuSentiment, ParaPhaser, Collection-3 demonstrated that our techniques allow to achieve compression from $17\times$ to $49\times$, while maintaining quality of $1.7\times$ compressed student with the full-sized vocabulary, but reduced number of Transformer layers only. We make our code and distilled models available.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.