Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Processing Network Controls via Deep Reinforcement Learning (2205.02119v1)

Published 1 May 2022 in math.OC, cs.AI, and cs.LG

Abstract: Novel advanced policy gradient (APG) algorithms, such as proximal policy optimization (PPO), trust region policy optimization, and their variations, have become the dominant reinforcement learning (RL) algorithms because of their ease of implementation and good practical performance. This dissertation is concerned with theoretical justification and practical application of the APG algorithms for solving processing network control optimization problems. Processing network control problems are typically formulated as Markov decision process (MDP) or semi-Markov decision process (SMDP) problems that have several unconventional for RL features: infinite state spaces, unbounded costs, long-run average cost objectives. Policy improvement bounds play a crucial role in the theoretical justification of the APG algorithms. In this thesis we refine existing bounds for MDPs with finite state spaces and prove novel policy improvement bounds for classes of MDPs and SMDPs used to model processing network operations. We consider two examples of processing network control problems and customize the PPO algorithm to solve them. First, we consider parallel-server and multiclass queueing networks controls. Second, we consider the drivers repositioning problem in a ride-hailing service system. For both examples the PPO algorithm with auxiliary modifications consistently generates control policies that outperform state-of-art heuristics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)