Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

SVTS: Scalable Video-to-Speech Synthesis (2205.02058v2)

Published 4 May 2022 in cs.SD, cs.CV, cs.LG, and eess.AS

Abstract: Video-to-speech synthesis (also known as lip-to-speech) refers to the translation of silent lip movements into the corresponding audio. This task has received an increasing amount of attention due to its self-supervised nature (i.e., can be trained without manual labelling) combined with the ever-growing collection of audio-visual data available online. Despite these strong motivations, contemporary video-to-speech works focus mainly on small- to medium-sized corpora with substantial constraints in both vocabulary and setting. In this work, we introduce a scalable video-to-speech framework consisting of two components: a video-to-spectrogram predictor and a pre-trained neural vocoder, which converts the mel-frequency spectrograms into waveform audio. We achieve state-of-the art results for GRID and considerably outperform previous approaches on LRW. More importantly, by focusing on spectrogram prediction using a simple feedforward model, we can efficiently and effectively scale our method to very large and unconstrained datasets: To the best of our knowledge, we are the first to show intelligible results on the challenging LRS3 dataset.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.