Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SVTS: Scalable Video-to-Speech Synthesis (2205.02058v2)

Published 4 May 2022 in cs.SD, cs.CV, cs.LG, and eess.AS

Abstract: Video-to-speech synthesis (also known as lip-to-speech) refers to the translation of silent lip movements into the corresponding audio. This task has received an increasing amount of attention due to its self-supervised nature (i.e., can be trained without manual labelling) combined with the ever-growing collection of audio-visual data available online. Despite these strong motivations, contemporary video-to-speech works focus mainly on small- to medium-sized corpora with substantial constraints in both vocabulary and setting. In this work, we introduce a scalable video-to-speech framework consisting of two components: a video-to-spectrogram predictor and a pre-trained neural vocoder, which converts the mel-frequency spectrograms into waveform audio. We achieve state-of-the art results for GRID and considerably outperform previous approaches on LRW. More importantly, by focusing on spectrogram prediction using a simple feedforward model, we can efficiently and effectively scale our method to very large and unconstrained datasets: To the best of our knowledge, we are the first to show intelligible results on the challenging LRS3 dataset.

Citations (23)

Summary

We haven't generated a summary for this paper yet.