Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical approximation of probabilistically weak and strong solutions of the stochastic total variation flow (2205.01968v1)

Published 4 May 2022 in math.NA and cs.NA

Abstract: We propose a fully practical numerical scheme for the simulation of the stochastic total variation flow (STFV). The approximation is based on a stable time-implicit finite element space-time approximation of a regularized STVF equation. The approximation also involves a finite dimensional discretization of the noise that makes the scheme fully implementable on physical hardware. We show that the proposed numerical scheme converges to a solution that is defined in the sense of stochastic variational inequalities (SVIs). As a by product of our convergence analysis we provide a generalization of the concept of probabilistically weak solutions of stochastic partial differential equation (SPDEs) to the setting of SVIs. We also prove convergence of the numerical scheme to a probabilistically strong solution in probability if pathwise uniqueness holds. We perform numerical simulations to illustrate the behavior of the proposed numerical scheme {as well as its non-conforming variant} in the context of image denoising.

Citations (2)

Summary

We haven't generated a summary for this paper yet.