Numerical approximation of probabilistically weak and strong solutions of the stochastic total variation flow (2205.01968v1)
Abstract: We propose a fully practical numerical scheme for the simulation of the stochastic total variation flow (STFV). The approximation is based on a stable time-implicit finite element space-time approximation of a regularized STVF equation. The approximation also involves a finite dimensional discretization of the noise that makes the scheme fully implementable on physical hardware. We show that the proposed numerical scheme converges to a solution that is defined in the sense of stochastic variational inequalities (SVIs). As a by product of our convergence analysis we provide a generalization of the concept of probabilistically weak solutions of stochastic partial differential equation (SPDEs) to the setting of SVIs. We also prove convergence of the numerical scheme to a probabilistically strong solution in probability if pathwise uniqueness holds. We perform numerical simulations to illustrate the behavior of the proposed numerical scheme {as well as its non-conforming variant} in the context of image denoising.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.