Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

PSCNN: A 885.86 TOPS/W Programmable SRAM-based Computing-In-Memory Processor for Keyword Spotting (2205.01569v1)

Published 2 May 2022 in cs.AR, cs.LG, and eess.AS

Abstract: Computing-in-memory (CIM) has attracted significant attentions in recent years due to its massive parallelism and low power consumption. However, current CIM designs suffer from large area overhead of small CIM macros and bad programmablity for model execution. This paper proposes a programmable CIM processor with a single large sized CIM macro instead of multiple smaller ones for power efficient computation and a flexible instruction set to support various binary 1-D convolution Neural Network (CNN) models in an easy way. Furthermore, the proposed architecture adopts the pooling write-back method to support fused or independent convolution/pooling operations to reduce 35.9\% of latency, and the flexible ping-pong feature SRAM to fit different feature map sizes during layer-by-layer execution.The design fabricated in TSMC 28nm technology achieves 150.8 GOPS throughput and 885.86 TOPS/W power efficiency at 10 MHz when executing our binary keyword spotting model, which has higher power efficiency and flexibility than previous designs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.