Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Real-Time Streaming and Event-driven Control of Scientific Experiments (2205.01476v1)

Published 3 May 2022 in cs.DC, cs.SY, and eess.SY

Abstract: Advancements in scientific instrument sensors and connected devices provide unprecedented insight into ongoing experiments and present new opportunities for control, optimization, and steering. However, the diversity of sensors and heterogeneity of their data result in make it challenging to fully realize these new opportunities. Organizing and synthesizing diverse data streams in near-real-time requires both rich automation and Machine Learning (ML). To efficiently utilize ML during an experiment, the entire ML lifecycle must be addressed, including refining experiment configurations, retraining models, and applying decisions-tasks that require an equally diverse array of computational resources spanning centralized HPC to the accelerators at the edge. Here we present the Manufacturing Data and Machine Learning platform (MDML). The MDML is designed to standardize the research and operational environment for advanced data analytics and ML-enabled automated process optimization by providing the cyberinfrastructure to integrate sensor data streams and AI in cyber-physical systems for in-situ analysis. To achieve this, the MDML provides a fabric to receive and aggregate IoT data and simultaneously orchestrate remote computation across the computing continuum. In this paper we describe the MDML and show how it is used in advanced manufacturing to act on IoT data and orchestrate distributed ML to guide experiments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.