Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Neural language models for network configuration: Opportunities and reality check (2205.01398v3)

Published 3 May 2022 in cs.NI

Abstract: Boosted by deep learning, NLP techniques have recently seen spectacular progress, mainly fueled by breakthroughs both in representation learning with word embeddings (e.g. word2vec) as well as novel architectures (e.g. transformers). This success quickly invited researchers to explore the use of NLP techniques to other fields, such as computer programming languages, with the promise to automate tasks in software programming (bug detection, code synthesis, code repair, cross language translation etc.). By extension, NLP has potential for application to network configuration languages as well, for instance considering tasks such as network configuration verification, synthesis, and cross-vendor translation. In this paper, we survey recent advances in deep learning applied to programming languages, for the purpose of code verification, synthesis and translation: in particularly, we review their training requirements and expected performance, and qualitatively assess whether similar techniques can benefit corresponding use-cases in networking.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube