Improving Dual-Microphone Speech Enhancement by Learning Cross-Channel Features with Multi-Head Attention (2205.01280v1)
Abstract: Hand-crafted spatial features, such as inter-channel intensity difference (IID) and inter-channel phase difference (IPD), play a fundamental role in recent deep learning based dual-microphone speech enhancement (DMSE) systems. However, learning the mutual relationship between artificially designed spatial and spectral features is hard in the end-to-end DMSE. In this work, a novel architecture for DMSE using a multi-head cross-attention based convolutional recurrent network (MHCA-CRN) is presented. The proposed MHCA-CRN model includes a channel-wise encoding structure for preserving intra-channel features and a multi-head cross-attention mechanism for fully exploiting cross-channel features. In addition, the proposed approach specifically formulates the decoder with an extra SNR estimator to estimate frame-level SNR under a multi-task learning framework, which is expected to avoid speech distortion led by end-to-end DMSE module. Finally, a spectral gain function is adopted to further suppress the unnatural residual noise. Experiment results demonstrated superior performance of the proposed model against several state-of-the-art models.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.