Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 148 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A fast in-place interpreter for WebAssembly (2205.01183v1)

Published 2 May 2022 in cs.PL and cs.PF

Abstract: WebAssembly (Wasm) is a compact, well-specified bytecode format that offers a portable compilation target with near-native execution speed. The bytecode format was specifically designed to be fast to parse, validate, and compile, positioning itself as a portable alternative to native code. It was pointedly not designed to be interpreted directly. Instead, design considerations at the time focused on competing with native code, utilizing optimizing compilers as the primary execution tier. Yet, in JIT scenarios, compilation time and memory consumption critically impact application startup, leading many Wasm engines to later deploy baseline (single-pass) compilers. Though faster, baseline compilers still take time and waste code space for infrequently executed code. A typical interpreter being infeasible, some engines resort to compiling Wasm not to machine code, but to a more compact, but easy to interpret format. This still takes time and wastes memory. Instead, we introduce in this article a fast in-place interpreter for WebAssembly, where no rewrite and no separate format is necessary. Our evaluation shows that in-place interpretation of Wasm code is space-efficient and fast, achieving performance on-par with interpreting a custom-designed internal format. This fills a hole in the execution tier space for Wasm, allowing for even faster startup and lower memory footprint than previous engine configurations.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.