Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Lightweight Image Enhancement Network for Mobile Devices Using Self-Feature Extraction and Dense Modulation (2205.00853v1)

Published 2 May 2022 in eess.IV and cs.LG

Abstract: Convolutional neural network (CNN) based image enhancement methods such as super-resolution and detail enhancement have achieved remarkable performances. However, amounts of operations including convolution and parameters within the networks cost high computing power and need huge memory resource, which limits the applications with on-device requirements. Lightweight image enhancement network should restore details, texture, and structural information from low-resolution input images while keeping their fidelity. To address these issues, a lightweight image enhancement network is proposed. The proposed network include self-feature extraction module which produces modulation parameters from low-quality image itself, and provides them to modulate the features in the network. Also, dense modulation block is proposed for unit block of the proposed network, which uses dense connections of concatenated features applied in modulation layers. Experimental results demonstrate better performance over existing approaches in terms of both quantitative and qualitative evaluations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.