Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Result and Congestion Aware Optimal Routing and Partial Offloading in Collaborative Edge Computing (2205.00714v1)

Published 2 May 2022 in cs.NI, cs.SY, and eess.SY

Abstract: Collaborative edge computing (CEC) is an emerging paradigm where heterogeneous edge devices (stakeholders) collaborate to fulfill computation tasks, such as model training or video processing, by sharing communication and computation resources. Nevertheless, the optimal data/result routing and computation offloading strategy in CEC with arbitrary topology still remains an open problem. In this paper, we formulate a partial-offloading and multi-hop routing model for arbitrarily divisible tasks. Each node individually decides the computation of the received data and the forwarding of data/result traffic. In contrast to most existing works, our model applies to tasks with non-negligible result size, and enables separable data sources and result destinations. We propose a network-wide cost minimization problem with congestion-aware cost to jointly optimize routing and computation offloading. This problem covers various performance metrics and constraints, such as average queueing delay with limited processor capacity. Although the problem is non-convex, we provide non-trivial necessary and sufficient conditions for the global-optimal solution, and devise a fully distributed algorithm that converges to the optimum in polynomial time, allows asynchronous individual updating, and is adaptive to changes in network topology or task pattern. Numerical evaluation shows that our proposed method significantly outperforms other baseline algorithms in multiple network instances, especially in congested scenarios.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube